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Abstract

We introduce cross correlation-based
variances (#¢2) to estimate the Allan variance, the
modified Allan variance, and the time variance in the
presence of the measurement system noise. These
variances  substantially lower the short-term
measurement noise floor; however, they require
significantly more data. #o is also used as a tool to
analyze and improve the measurement system noise.
#0? bears a precise relation to the 3-cornered-hat o.
We have reduced the short-term noise floor for o,(1
s) by a factor of 100 relative to our initial hardware
and software configuration.

Introduction

The resolution or noise floor in time-domain
measurement systems is limited by added noise in the
measurement equipment. In this paper we introduce
several approaches to analyzing time-domain
measurement data which use cross correlation to
reveal data obscured by the measurement noise.
Looking for estimation of the Allan variance in such
an environment we use #ay(r) (cross-sigma),
#moday(r) (cross- mod sigma), and #o,(7) which
have close correspondence to the traditional variances
Oy(T), moday(‘r), and o,(7) [1-3].

The principle is to measure the time
differences between two clocks by means of two
independent simultaneous measurements and then to
cross-correlate and average them to reduce the
contributions of the measurement noise.  This
approach yields substantial improvements in the
short-term noise floor of the system. However, it
requires significantly more data. In this paper we
show how this analysis is applied to the NIST
Extended Dual Mixer Time Difference Measurement
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System [4,5] (EDM system) resulting in a substantial
improvement in the estimates of o,(7), IIlOde(T), and
o.(7). Following similar guidelines, other
measurement configurations such as the common
view GPS time transfer may benefit from this method
as well.

We also address measures of correlation,
extensions to 3-cornered-hat measurements, the use
of multiple clocks, and estimation of uncertainties.
By studying the nature of these parameters as a
function of 7 we were able to identify noise
components that corresponded to physical processes
within the measurement system. Once identified, we
reduced their effect on the noise floor, resulting in a
better measurement system.

Definitions and Notations

The Allan variance is defined as

A1) = <XO2Xt+D+X(+20P>/27) =
<> = <8:6> M
where < > denotes ensemble average or sample

average, X(t) is a time series of time differences
between two clocks spaces 7 seconds apart, and 6 is
the normalized second difference. If 7 is an integral
number of 7, that is, n7y, an overlapping average
may be used by shifting the 6-6 terms by 7,.

If we have two series a and b of time
differences measured at the same instants, we obtain
two sigmas which are o%,(t), = <8,3,> and (1),
= <§,6,>. We would like to think of these time
series as originated from the same two clocks i and
j but from two measurement systems A and B. For
two such time series we define #ay(‘r) (read "cross-
sigma") as
#o2 (1) = <8,°8,>, 2
where ab indicates the origin of the input series a and
b of #ay(r), and



#o (T = sign(<8,8>) | <8,8,> | %, 3)
so the sign of <§,'8,>, which may be negative, is
preserved. A change in the sign (as a function of 7)
in <§,8,> indicates a change in the causes for the
correlation between the 3, and &, time series.

#0%(r) bears a strong relation to the traditional
covariance. A similar sigma was investigated by
Groslambert et al. [6].

Similarly, the modified Allan variance is
defined as

moda? (7) = < {X()-2X(t+7) +X(t +2012>/Q272) =
<pp>, @

where the underline denotes an average over the
interval 7, < > denotes as average over the whole
measurement time series, and g is a normalized and
averaged second difference. For the two time series,
aand b, we define #modoy(r) (read cross-mod-sigma)
by

#modo? (1), = <pa'pp>, With 5)

#modo, (1), = sign(<py o >) | <parwn> 1%, (6)
following same reasoning as for #o.

In the same fashion, we extend the definition
of a,(7) commonly called T-VAR or time variance to
#a,(7), (read cross-T-VAR). That is,

#o? (1) = <e€g€,>, Where [3]

e = 7/312.

Q)

To simplify notation and to cover all types of
o and #o, we use d, for 8,, p, and ¢, Then, for
example, we have

#oU1) = <dgdy>

and

®

modo¥(r), = <dyd,> = <d*>

So far, #o was obtained by crossing d, and
d,, where each such second difference was obtained
within one time series. It is possible to cross elements
differently as will be clear from the following
definition. We denote this type of #o by #,02(1) (a
denotes alternate for alternate crossing).
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#a0%(1) = ®
<{X (t+27)-Xp(t+7)-X (t+1)+ Xp (O H{Xp(t+27)-
X, (t+D)-Xp(t+ 1)+ X (1)} > 127

= <{X,(t+27)-X,(t+7)-Xp(t+7) + X (O HXp(t+27)-
Xp(t+7)- X+ +X, 0} > /27 . (10)

Here we crossed X between the two series in the first
line and y (the fractional frequency [X(t+7)-X(1)]/7)
in the second line. The equality shows that it does
not matter whether we cross X or y; both methods
result in the same #,0. Experimentally we find that
in most cases #o is lower than #,0 and the differences
are small; therefore we will not discuss these
alternatives any further.

Measurement Setu

The measurement system is the Extended
Dual Mixer Time Difference Measuring System 4,51
used by NIST and some other laboratories for many
years. This system is called the EDM system.
Figure 1 is a block diagram of the system. Channel
1 is used as the system master. An offset frequency
reference, generated from channel 1, is mixed with
all other input channels of same nominal frequency.
(For these tests the input frequency was 5 MHz and
the beat frequency was 10 Hz). The time differences
between channel 1 and all other channels are obtained
virtually simultaneously by means of time interval
counters, one per channel. The counters arc
triggered by channel 1, which provides the start
pulse. The time differences between any two clocks
(channels) are then computed from the comparisons
with channel 1.

To do the #o analysis, we split each clock
into two channels. This is done with a power splitter
or a distribution amplifier. Figure 2 is a block
diagram of the information flow in such a setup. The
measurement blocks in this figure include both the
hardware and the software functions. Thus for each
two clocks we may obtain four time series. To be
specific we choose two time series for a #o analysis.
We denote the channels due to clock i as ¢;, and Cp,
and the channels due to clock j as ¢ and Cj,.
Further, let us denote the time series (of second
differences) d, as originating from comparing c;, with
Cj, and dy from comparing c;, and ¢, We may
calculate two additional time series d. and d4
originating from the other two channel combinations.
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Figure 1. Block diagram of the extended dual mixer time difference measurement system.
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Figure 2. Information flow in the #o setup.
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If we use all four channel combinations, we
may use an extended #o denoted as #,0 defined as

#,0%(1) = < (dydyddp'? >. (11

No change in the setup is required to use this
equation since all four channels are already present
once each clock is split. However, experimentally
#,0 has an advantage over #o only in limited cases.
The reason is that it is averaging the best and the
worst channels, whereas when using #o we can
choose the best performing channels (having the
least-correlated noise).

This setup may be extended to include more
than two channels per clock. If the number n of
channels per clock is even, we may extend the
definition of #o to

#,0%1) = < (dydydedg... ) > (12)

A still different extension is to compare one
clock to two different reference clocks. As will be
shown, the #0® of this combination is exactly
equivalent to the 3-cornered-hat Allan variance.
Figure 3 shows a setup for 3-cornered-hat where
clock i is split into two channels, each of which is
compared to two other clocks through two
combinations.

General Noise Relationships

We may break down d, and dy so that
d,=Q+A and d,=Q+B, where Q is the time series
due to the clocks only (assuming ideal measurement)
and A or B are due to the added noise in the
measuring systems. The task is to estimate the Allan
variance <Q?> in the presence of the added noise.

We note the following relations valid for any
T

P40 = <(Q+AR+Q+By> = 2<Q> +
2<QA+B)> + <A?> + <B?>, (13)

Wt = 2<(Q+AYQ+B)> = 2<Q*> +
2<Q(A+B)> + 2<AB>. . 14)

Therefore:

(1) If the measurement noise is low enough
compared to the clocks that
2<Q?>>» <A?>+<B?> (then 2Q?>2<AB>)
and

(02, + %p)2 = Koty 15)

then #0%,, is a good estimate of the average Allan
variances.
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Fig. 3 Information flow in a #o setup for 3-cornered-hat.
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(2) Since <AZ> + <B?> =2 <AB> is always true,
#0%,, is never higher than (0%, +0%,)/2, #o%y is a
better estimate of the Allan variance than the average
(6%, +0%,)/2 and practically it is better than the best
of these two sigmas. Following the same reasoning,
the difference

DX1) = (0%, +0%)/2 - |#d%,| = <A2+B?>/2 -
| <AB> | 16)

is positive, is independent of Q, and characterizes the
measurement system.

(3) To estimate the added noise by the
system we connect the same clock to all inputs, then
Q=0. Therefore Eqs. (8) and (9) become

an
(18)

%+, = <A?> + <B?>,
2-#0%,, = 2<AB>.

Therefore the lower is the correlation <AB>
between A and B, the higher is the ratio

(0%, +0%) | |2-#8%, | =
<A? + B*> /2| <AB> . 19)
This ratio is a measure of the improvement in the
noise floor due to the use of #o¢ instead of o.

(4) We define the function R(7) as

R(7) = #0%,,/(0,°0p)- (20)
When measuring the noise floor using the above
method Q=0, and we obtain

R(r) = <A-B>/{<A?>-<BZ>}%. 1)
Equation (20) shows that R(7) is between 0 and 1.
The definition of R(7) is similar to the definition of
the Pearson correlation coefficient r [7]. In statistics
2 is a measure of the correlated portion of ¢%(x1) of
the variable x1 due to the linear regression of a
second variable x2. Also, (1-12) is a measure of the
uncorrelated portion. Similarly we use R%(7) as a
measure of the correlation between different channels
in the measurement system. We use R? as a measure
of the improvement due to the use of #¢ and as a
figure of merit reflecting the amount of correlated
noise in the system.

(5) Since #0%,,=<d, d,>, 0%,=<d,d,>
and %, = <d,d, >, the uncertainty in #o (due to i
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spread) is expected to be of the order of the
uncertainties in ¢, and o,. When using overlapping
averages, a simple way to deal with uncertainties,
especially when the noise is not white is to divide the
time series interval (total number of points) into N
equal intervals (we use four) and for each of them
compute #o,,, 0, and o,. Then the standard
deviations of #0,,, 0, and o}, are computed from these
n values. They are then divided by V/n to obtain an
estimate of the uncertainties #Er,,, Er, and Er,. This
method avoids any assumptions and the need to know
the type of noise when estimating the uncertainty of
oy. The method used to compute the partial #0,,, 0,
and oy, (overlapping intervals) is the same as for the
complete series. An additional advantage of dividing
into n segments is it reveals how quickly #o
converges to a limit with the number of points. The
uncertainty in #o as a function of n can be used to
detect this convergence.

(6) Application to 3-cornered-hat
measurements. Comparing clock i to two other
different clocks j and k results in two measured time
series, a=ij and b=ik. A third time series c=jk may
be computed from these two. We use here the ij
notation to indicate the origin of the time series. As
before,

oy = <dydy> (22)
the 3 corner hat o; is
0'2i = < d‘JdU + dik'dik - djkdjk >/2, (23)

where d;, was calculated from the other series from

djk = dik - dij’ (24)
as is done in the EDM system. Substituting d;
yields

o 4y + didy - ([ - dy)-(diy - dyp) >/2

< dij.dik + dik'dij >/2 = <dij.dik> = #Ollﬁgé)

where ij_ik indicate that the crossing is between ij
and ik. This means that to get the 3-cornered-hat-
sigma we do not need to compute all three sigmas;
we can use two time series and compute the
cross-sigma.

Note that

ij_jk,



because
<d_|ldjk > = - <dij.djk >.

Usually, the 3-cornered-hat equation of o; is based on
the assumption that the three sigmas are independent.
This is not the case in the EDM system since the jk
time series is calculated from the other two. This
relationship occurs because all clock comparisons are
derived by their comparison to clock 1.

Going one step further, we can derive a 3-
cornered-hat for the #o. Let us assume that each one
of the three clocks i, j, and k is split into two
channels. We can choose now two time series, for
example d;; j; and d;; j, and compute #o¢ for them:
#oha jriz g = <diji-dip_2>- @n
Following Eq. (23) the 3-cornered-hat #o?; for clock
i is defined as

4% =

4

<djy jird 2 + dig y'dip k2 -
Lk 2 >72. (28)
As before we obtain the jk series from the two other
by

29
(30)

dji 1 = dip 1 - din s
djp 2 = dip k2 - dig jo-
Substituting d;; ; and dj 2 yields

#d%

= < dy jrrdip jp + dig diz k2~
iy 1-diy o) (i 12-dip j2) > /2,

= < dy jrdp e + iy ardi p >72,
= (#% i + #9702 j2i1_a )2 (3D
#02, is the average of the two #¢’s and is symmetrical
in 1 and 2.

Our previous discussions show that similar equations
are obtained for #mods and #o,.

Results

Analysis of the EDM system noise reveals
several noise sources. These are counter quantization
noise, instabilities in synthesizer mixer noise, digital
level changes, distribution amplifiers, environmental
effects (temperature and vibration), and spurious 60
Hz modulation. Some of these sources can be seen
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directly in the time series and some, such as digital
levels, in statistical histograms of the time series. By
analyzing #o¢, which is sensitive to correlated (or
common) noise, we can trace the pollution of these
types of noises in the system. It was impossible to
use o as a guide because of it’s much smaller
sensitivity. Figure 4 shows an initial #¢ plot of the
system noise floor. The input frequency was 5 MHz
and the offset frequency is 10 Hz for Figures 4-8. In
this figure we used the setup of Figure 2, where a
and b result from two chosen time series and all
inputs originate from the same hydrogen maser. The
relatively small differences between the #o and ¢
show that the correlated noise is high and probably
accounts for most of the measurement noise. Using
10000 points for 7y, the uncertainties in this and the
following graphs are at the level of few percent. An
effort was made to cancel the correlated noise to as
low a level as possible. This included changes in the
offset synthesizer to lower the PLL time constants,
replacement of noisy components and especially the
mixers, isolation and filtering of the power supplies,
and the use of power splitters instead of distribution
amplifiers. We have found also that dc isolation of
the incoming signals reduces measurement noise.
Figure 5 shows the present state of the system noise
floor obtained by injecting the same clock to all
channels. Figure 6 shows the #modo analysis of the
data of Figure 5. Note the sign change in #o and
#modo at about 8 s in Figures 5 and 6; this indicates
a change in the causes of the correlations. |#0|
may be very low at the regions of sign change due to
the balance of these causes, resulting in effective
uncorrelated noise. This change is supported by
Figure 7 where R2(7) has two or three peaks in the
correlated noise. The noise floor peaking around
r=30 s is probably due to the synthesizer’s
instability, as can be verified by changing
components in the synthesizer. The improvement in
noise floor is nearly a factor of 100 over the initial
performance and seen in Figures 4-6.

Figure 8 shows the 3-cornered-hat #o
obtained for an active hydrogen maser splitting it (as
clock i in Figure 3) and crossing each of the two
channels with two other hydrogen masers. We note
the influence of the synthesizer’s instability peaking
around 7=30s. Comparing with Figure 4 shows that
this measurement was impossible before the system
improvements.

—n



Initial Noise Floor for EDM
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Figure 4. Initial noise floor for the NIST Extended Dual Mixer System (EDM) versus measurement time 7.

Improved System Noise Floor for EDM
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Figure 5. System noise floor for #o,(7) and oy(7) after improving the measurement hardware.
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Improved System Noise Floor

mod o,(7)

1.00E-12 -1

1.00e113 + mod O,

S
N
> *.
O, oes | ™
9 ‘#modo-“‘ P
E positive negative
1.00E-15
1 ]
|
1.00E-16 - + " + +
0.1 1 10 100 1000 10000

z(s)

Figure 6. System noise floor for #modo(7) and moday(7) after improving the measurement hardware.

R? Correlation for the #mod o Noise Floor
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Figure 7. R? for #modo versus measurement time 7. The increase in R? at longer 7 indicated increased

correlated noise. The dips in R? coincide with the change in the sign of #modo indicating a change in the
correlation mechanism.
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3-corner-hat #mod o, for Hydrogen Maser
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Figure 8. Estimates of #modoy(7) at 5 MHz reference frequencies for an active hydrogen maser versus measurement

time 7.
Conclusions

We have shown the usefulness of using #o and R as
tools to lower the noise floor resulting so far in an
overall improvement of about 100. These
improvements enable low noise measurements that
were not possible earlier at 5 MHz. We have shown
as well that the #o is a good estimate of the Allan and
modified Allan variances and also some precise
relationships concerning the 3-cornered-hat.
Additional work should be done to further eliminate
the common noise injected from the various sources
to lower #o. Once the tools are established they can
be used to improve the present system to its limits
and to design a new and better system. Other
systems having separate measurement channels, such
as the common view GPS, may benefit from these
methods as well.
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